Alan Tupaj Vista Murrieta High School Website: www.vmhs.net (Click on "Teachers" then "Alan Tupaj")	Relative Extrema AP Readiness Session 4 Answers to examples posted on my website					
Critical Points: $f'(x) = 0$ or $f'(x)$ is undefined						
Relative Minimum point: Critical point with a sign change from negative to positive						
Relative Maximum point: Critical point with a sign change from positive to negative						
Find the x-coordinate of each critical point Classify each as a relative maximum, relative minimum, or neither.						
Relative Extrema Question Type	<u>Examples</u>					
Given derivative in factored form	1. $f'(x) = (x-1)^2(x-3)(x+5)$ Critical points: $x = -5, 1, 2$					
The sign does not change at double roots (roots from squared factors)	+++					
	x = -5: rel max, $x = 1$: neither, $x = 3$: rel min					
Polynomial with factorable derivative	2. $f(x) = -2x^3 + 6x^2 - 3$ $f'(x) = -6x^2 + 12x = 0$					
A leading coefficient that is negative causes large values of x to have negative derivative values.	-6x(x-2) = 0 Critical points: $x = 0, 2$ $++++++++++++++++++++++++++++++++++++$					
Polynomial with fractional exponents	3. $f(x) = x^{\frac{8}{3}} - 4x^{\frac{2}{3}} \qquad f'(x) = \frac{8}{3}x^{\frac{5}{3}} - \frac{8}{3}x^{\frac{-1}{3}} = 0$					
Factor out the term with the lowest exponent value.	$\frac{8}{3}x^{\frac{-1}{3}}(x^2 - 1) = 0$					
	$\frac{8}{3}x^{\frac{-1}{3}}(x+1)(x-1) = 0$					
	Critical points: x = 0, 1, -1					
	++++++++++++++++++++++++++++++					
	x = -1: rel min, $x = 0$: rel max, $x = 1$: rel min					

4. $f(x) = \sin^2 x + \sin x$ $x = [0, 2\pi]$ $f'(x) = 2\sin x \cos x + \cos x = 0$

$$cosx(2sinx + 1) = 0$$
 $cosx = 0$, $sinx = \frac{-1}{2}$

Critical points: $x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$

 $x = \frac{\pi}{2}$: rel max, $x = \frac{7\pi}{6}$: rel min, $x = \frac{3\pi}{2}$: rel max, $x = \frac{11\pi}{6}$: rel min

5. Rational functions

Critical points from the denominator are always squared and do not change sign.

$$f(x) = \frac{x+5}{x^2-16} \qquad f'(x) = \frac{(x^2-16)(1)-(x+5)(2x)}{(x^2-16)^2} = 0$$

$$\frac{x^2 - 16 - 2x^2 - 10x}{((x+4)(x-4))^2} = 0 \qquad \frac{-x^2 - 10x - 16}{((x+4)(x-4))^2} = 0$$

$$\frac{-(x+2)(x+8)}{((x+4)(x-4))^2} = 0$$

Critical points: x = -8, -4, -2, 4

x = -8: rel min, x = -4: neither, x = -2: rel max, x = 4: neither

6. Functions with expressions to higher powers.

Factor out the entire expression before simplifying

6.
$$f(x) = x(x-4)^3$$
 $f'(x) = x(3)(x-4)^2 + (x-4)^3(1) = 0$

$$(x-4)^2(3x+x-4) = 0$$

$$(x-4)^2(4x-4) = 0$$

Critical points: x = 1, 4

x = 1: rel min, x = 4: neither

7. Absolute maximum and minimum values

- Find all critical points.
- Substitute all critical points in the given interval and the endpoints into the original function and compare function values.
- Determine the maximum and minimum values.

7.
$$f(x) = x^4 - 8x^2 + 2$$
 $f'(x) = 4x^3 - 16x = 0$

Find the absolute maximum and minimum values for f(x) on the interval [-3, 1].

$$f'(x) = 4x(x^2 - 4) = 0$$
 $f'(x) = 4x(x - 2)(x + 2) = 0$

Critical points: x = -2, 0, 2 endpoints: -3, 1 (x = 2 not on interval)

$$f(-3) = 11$$
, $f(-2) = -14$, $f(0) = 2$, $f(1) = -5$

Absolute Maximum Value = 11, Absolute Minimum Value = -14